
IBIS-AMI Time-Domain Reference Flow

–James Zhou, QLogic Corp.

Aug. 29, 2011

1

Background and Objectives
• The subject of IBIS-AMI cookbook was raised by Mike LaBonte,

Chairman of IBIS Quality Task Group, during the Aug 9, 2011
teleconference.

• The AR was to create a “starter” presentation summarizing the
current status of IBIS-AMI reference flows and modeling
approaches for the purpose of exploring end-user interests and
concerns on IBIS-AMI.

• With the end goal being to create materials for end-user education
and training, the feedbacks and comments generated during this
process may also help to identify issues in the Specification
requiring clarification or modification.

• This presentation only covers IBIS-AMI time-domain reference flow.
• Thanks to T. Westerhoff and W. Katz of SiSoft and, Greg Edlund of

IBM for insightful comments to the original version of the
presentation.

2

AMI Reference Flow – Brief History

• BIRD 104.1, (10/2007)
– First public proposal of IBIS-AMI

• BIRD 107.1, and IBIS Specification 5.0, (05/2008,
08/2008)
– Introduced Use_Init_Output to solve the double counting

issue when filtering exist in both AMI_Init and
AMI_Getwave functions

– Added dedicated section to describe reference flow

• BIRD 120.1 (04/2011)
– Deprecated Use_Init_Output
– Revised reference flow section to separate statistical and

time-domain flows
– Corrected inconsistencies in IBIS 5.0 flow for NLTV systems

3

x(t)

Reference Flow – IBIS 5.0

TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)

y(t)x(t)

Step 1: h1(t) = hAC(t)

Step 2a: h2a(t) = AMI_InitTX[h1(t)] = hTEI(t)*hAC(t) (Tx Use_Init_Output = TRUE)
Step 2b: h2b(t) = h1(t) = hAC(t) (Tx Use_Init_Output = FALSE)

Step 3a: h3a(t) = AMI_InitRX[h2(t)] = hREI(t)*h2(t) (Rx Use_Init_Output = TRUE)
Step 3b: h3b(t) = h2(t) (Rx Use_Init_Output = FALSE)

Step 4: h4(t) = h3(t) *b(t)*p(t)

4

Step 5a: h5a(t) = AMI_GetWaveTX[h4(t)] (Tx GetWave_Exists = TRUE)
Step 5b: h5b(t) = h4(t) (Tx GetWave_Exists = FALSE)

Step 7: y(t) = h6(t)

Step 6a: h6a(t) = AMI_GetWaveRX[h5(t)] (Rx GetWave_Exists = TRUE)
Step 6b: h6b(t) = h5(t) (Rx GetWave_Exists = FALSE)

Observations

• hAC(t) is the end-to-end analog channel impulse
response

• b(t)*p(t) is the input waveform to Tx AMI block
• It is not obvious how to map this process to

system equations relating output to input
• Init_Returns_Impulse indicates whether output

AMI_Init is modified
• Naming conventions for impulse and

AMI_GetWave functions in this presentation
follow that of DAC 2009 IBIS Summit Presentation
by W. Katz

5

Reference Flow Diagram – IBIS 5.0

• Output of AMI_Init convolves
with stimulus to become the
input to AMI_GetWave.

• Analog channel hAC(t)
participates in both Init and
GetWave calls.

• Init_Returns_Impulse and Tx/Rx
GetWave_Exists only impact
AMI_Init and AMI_GetWave
functions locally

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h3(t)=AMI_InitRX[h2(t)]

h4(t) = h3(t)*x(t)

h5(t)=AMI_GetWaveTX[h4(t)]

y(t) = h6(t)

h6(t)=AMI_GetWaveRX[h5(t)]

hAC(t) x(t)=b(t)*p(t)

6

Reference Flow Diagram – IBIS 5.0

• If Use_Init_Output = FALSE,
Init phase is pass-thru only

• Convolving x(t) directly with
hAC(t) without including the Tx
AMI block (Step 4) makes this
flow invalid for NLTV Tx AMI
block

h1(t) = hAC(t)

h2(t) = h1(t) = hAC(t)

h3(t) = h2(t) = hAC(t)

h4(t) = hAC(t)*x(t)

h5(t)=AMI_GetWaveTX[h4(t)]

y(t) = h6(t)

h6(t)=AMI_GetWaveRX[h5(t)]

hAC(t) x(t)=b(t)*p(t)
hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)x(t)

7

Double-Counting

• Tx equalization may be double-counted if AMI_GetWave
contains a different equalization than AMI_Init.

• Ambiguities exist in input and output variables of
AMI_GetWave calls.

• Use_Init_Output was introduced to allow bypassing of
AMI_Init function calls by directly convolving the analog
channel with stimulus before calling AMI_GetWave functions.

• The reference flows become complicated when all
combinations of Use_Init_Output, GetWave_Exists must be
dealt with in a consistent manner.

8

Reference Flow - BIRD 120.1

Step 1: h1(t) = hAC(t)

Step 2: h2(t) = Tx_AMI_Init[h1(t)] = hTEI(t)*hAC(t)

Step 3: h3(t) = Rx_AMI_Init[h2(t)] = hREI(t)*hTEI(t)*hAC(t)

Step 4: h4(t) = x(t) = b(t)*p(t)

9

x(t) TX EQ
TX

Analog
TX pkg

Channel
Interconnect

RX pkg
RX

Analog
RX EQ,

CDR

hTEI(t)
gTEG()

hAC(t)
hREI(t)
gREG()

y(t)

y(t)x(t)

Step 5: h5(t) = gTEG[h4(t)]; (TxGE = TRUE)

Step 6a: h6a(t) = gREG[h1(t)*h5(t)]; (TxGE=TRUE;RxGE=TRUE)

Step 6b: h6b(t) = gREG[h2(t)*h5(t)]; (TxGE=FALSE;RxGE=TRUE)

Step 8: h8(t) = {h7a(t), h7b(t), h6c(t), h6d(t)}

Step 6c: h6c(t) = h3(t)*h4(t); (TxGE=FALSE;RxGE=FALSE)

Step 6d: h6d(t) = hREI(t)*h1(t)*h5(t); (TxGE=TRUE;RxGE=FALSE)

Step 7: h7a,b(t) = gREG[h6a,b(t)];

• [Note]: TxGE is TX GetWave_Exists; RxGE is RX GetWave_Exists

Block Diagram and Equations

• Four possible cases of Tx and Rx AMI system with analog
channel in between
– [Tx GetWave_Exists, Rx GetWave_Exists] = {FF,FT,TF,TT}

10

hTEI() hAC(t) hREI()

y(t)x(t)

FF: y(t) = hREI(t)*hAC(t)*hTEI(t)*x(t)

hTEI() hAC(t) gREG()

gTEG() hAC(t) hREI()

gTEG() hAC(t) gREG() TT: y(t) = gREG[hAC(t)*gTEG[x(t)]]

TF: y(t) = hREI(t)*hAC(t)*gTEG[x(t)]

FT: y(t) = gREG[hAC(t)*hTEI(t)*x(t)]

Diagram of Equations

• Four possible combinations of Tx GetWave_Exists and Rx GetWave_Exists are:
FF,FT,TF and TT

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h6a= h1*h5

h3(t)=AMI_InitRX[h2(t)]

h4(t) = x(t)

h5(t) = gTEG[x(t)]

h7=gREG() Output

h6c= h3*h4h6b= h2*h4

hREI(t) = h3/h2

h6d= hREI*h1*h5

TT FT FF TF

T*

11

Reference Flow – Original View

h1(t) = hAC(t)

h2(t)=AMI_InitTX[h1(t)]

h6a= h1*h5

h3(t)=AMI_InitRX[h2(t)]

h4(t) = x(t)

If Tx GWE=True, h5(t) = gTEG[x(t)]

h7=gREG(h6a,b) Output

h6c= h3*h4h6b= h2*h4 h6d= hREI*h1*h5

TT FT FF TF

12

Re-assign Tx GWE,
Rx_GWE to avoid
double-counting

Reference Flow – Alternative View

• This is equivalent to reference flow on previous page

h1(t) = hAC(t)

h3=hREI*h2

gTEG[x]

Output

h2*x

gREG[h2*x]h3*x

hREI=h3/h2

hREI*hAC*gTEG[x]

gTEG[x]

hAC*gTEG[x]

gREG{hAC*gTEG[x] }

TTTF

FF

FT

13

h2=hTEI*hAC

h4(t) = x(t)
Re-assign Tx GWE,
Rx_GWE to avoid
double-counting

Observations

• Flow can be mapped to system equations from input to output
for each block

• There are four branches in reference flow based on
combinations of Tx and Rx GetWave_Exists

• Use_Init_Output was deprecated in BIRD120.1

• The same reference flow applies to both LTI and NLTV AMI
blocks.

• GetWave_Exists may be re-assigned at simulation time to
avoid double-counting

14

AMI_Init

• If Init_Returns_Impulse = TRUE, AMI_Init returns the
convolution of input impulse response with impulse
response of the equalization

• If Init_Returns_Impulse = FALSE, AMI_Init passes the
input to output without changing it

– the AMI block represents an all pass filter which impulse
response is the Dirac delta function with unit amplitude.

• The output can always be interpreted as the convolution
of the input with the impulse responses of the AMI block.

15

AMI_GetWave

• Only applies to time-domain flow; does not
apply to statistical flow

• Can represent either NLTV or LTI AMI blocks

• Explicit relationship between output and input
may not exist

16

Conclusion

• Deprecation of Use_Init_Output simplified the
reference flow without comprising
functionality

• Init_Returns_Impulse is information only

• Output can be related to input at each block

• Default reference flow can be changed at
simulation time to avoid double-counting by
reassigning Tx and Rx GetWave_Exists values

17

